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Abstract

The clinical application of dynamc ECT recorstruction
algorithms for inconsistenprojectian (IP) datahasbeenbeset
with difficulties. Theseinclude poa scalability humeical
instability of algorithns, prodems of nonuniqueness of
solutions, the need to oversimplify tracer kinetics, and
impracticd compuational burden We presenta stable,
low computational cost recastruction algotithm which is
able to recover the tracer kinetics of severd hurdred image
regions at realistic noise levels. Through optimal selection
of a small set of nonnegdive basis functions to describe
regional time-actvity curves(TACs), we areableto solve for
the first-orde comprtmentalmocel kinetics of eachregion.
A nonuniform resolution pixelization of image space is
employed to obtain highestresolutionin regions of interest.
Thesespatialandtempoal simplificatiors improve numeical
condtioning, provide robustness againstnoise, and greatly
decreaseéhe computationalburdenof dynamic reconstration.
We apply this algoithm to IP phartom data whose source
distribution, kinetics and count statisticsare moceled after a
clinical myocardial SPECTdataset. TACs of phartom regions
arerecoveredto within ameansquareerrorof 6%, anaccurag
which provessuficiert to allow for quaritative detectionof a
myoardial perfusion defect within healthymyocardialtissue.

I. INTRODUCTION

First-order compartmental mockls are routindy used to
describe phamacokiretics within biologicd systems. The
resposes of such modelsare governed by first-order linear
differential equatims, usually driven by a single forcing
function correspondig to the input of a particula substance
into the comprtmentalsystem. As such, the resposestake
the form of the corvolution of the sums of decayng real
exponential terms with this input fundion. Expamential
spectralanalysisinvolvesthe quartification of the coeficients
of theseexponentialterms(modes) within the compartmental
modd response,in terms of a preselectedspectrum of
exponential functions [1]. This apprach obviates the need
for iteratve estimation of the nontlinear parametes (rate
constants)of a compartmental modd, allowing corvenient
solutionvia linear method. Unfortunately owing to the fact
that sums of decayng real exporentials are not uniquey
paraneterizedin the presewe of noise, solutiors in terms
of spectralcoeficients may not be unigwe [2, 3]. A strong
depenlence may corsequentlyexist betweenthe particuar
solutionobtainedandthe noisepresentwithin the data.

We have previously shovn how unique representatios
of commrtmentalmodé responsesnay be obtaina through
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the representatio of an exponential spectralbasisusing an
orthayonalapprimating basis[4, 5]. This techniqe greatly
redu@s problemdimensionand ensureshat ary solutionin
termsof the coeficierts of this basiswill be unique. However,
this scheméhastwo disadwartages:

1. The new basisfunctions possessgydive values, and
in general requie negative coeficients in orde to
appoximateanexporentialspectrakange.

2. The coeficients obtained do not have obvious
physiologica significance.

In this pape, we addressthe former issue by transfoming
the orthagonal basisset so that a broadexponential spectrin
may be apprximatedin termsof nonnegaive basis(NNB)
functions, linearly combired using nonrnegaive coeficients
(NNC).

We cannotaddresshe secondssueusinga chang of basis
functions, sincesucha charmge will almostinvarably leadto a
represetationin whichthekinetic paraneterswill be devoid of
physiologicalmearing. However, this consideationis arguably
spuriots if the time-actvity curves (TACs) for all image
regionsareaccuatelyrecovered sinceary modelmaythenbe
fit to these. Our primary goalin this work is to demorstrate
how the NNB-NNC represetation, used in conjunction
with a non-uniform resolutionrecorstructiongrid, leadsto a
tremendusredictionin thedimersionof theproblemof direct
dynamic emissioncomputedtomagraply (ECT) recorstruction
from inconsistentprojections. By minimizing the nunber of
paraneters,this appoachtendsto improve prodem cordition,
leadingto anoverdetermired dynamicimaging systemmatrix.
Thisin turnimprovesrobustnessgairst noisewhich facilitates
therecovery of TACsto anaccurag suficientto allow clinical
diagrosisbasedn resultsobtaned.

[I. PROBLEM FORMULATION

A. Kinetic model

Sinceoneof themostcompelling applicatiors of algoithms
for direct recorstructionfrom inconsisteniprgections(DRIP)
lies in clinical myocardial ECT, we chomse to addressthe
dynanmics of the first-order single compatmentalmodel. This
mode is apprgriate for tracerssuch as ™ Tc-teboraime,
whoseuptale and washoutfrom the myocadium have been
shavn to correlatewith blood flow and corsequentlymay
sene as a good indicata of myocadial defectsassociated
with ischemiaandinfarctedtissue[6]. This kinetic modelis
represetedschematicallyn Figurel.

Accordirg to this mockl, thetime-actvity within regionn is
givenby:

G (t) = kT i(t) xe k2t 1)



where i(t) is the measurd blood input fundion, and the
‘x’ opemtor denotescornvolution. The constats k; and
ko reptesentthe wash-in and wash-ot coeficients of the
compmrtment, respectidly. We assumethroughait that the
blood input fundion has been obtainedvia arterial blood
sampling In caseswherethe projedion dataare reasonaly
consistent, the input function may be estimatedfrom the
activity within theleft ventricdar bloodpool [7].

B. Geometricnodel

Without loss of generality for purpcsesof illustration we
refer to the 2D non-uniform resolutionpixel grid shovn in
Figure2.

The TAC ¢,,[!] is assignedo the nth region Q,,(x), n =
1,2,..., N. In geneal, we requirethatthe undelying source
distribution Q(x) be completelysggmentednto regionsin this
way.

C. Reconstructiomproblem

Givenasetof projectionmeasuementsy (6(¢)) acqured at
timest = ¢, 1 =0,1,..., L — 1, atanglesd[(], our objective
is to recover the time activity curves ¢,,[{] for all NV regions.
This amouwnts to recorstructinga dynamic imagesequene of
length L.

[11. ALGORITHM FORMULATION

This algorithm repesentsan extensionof the convolved
orthayonalbasisrecmstructionalgorithm (COBRA) describe
in [5]. Theformuation is very similarto COBRA, except that
we now introduce a new basisand nonnegativity constraints
on the reconstrated TACs. We also genealize the algorithm
to acconmodate irregular time sampling of projectims.
Owing to the small numker (N < 10) of regions presentin
the segmertation to which COBRA was appliedin [5], these
constraims proved unneessary However, their impasition
is essentialto ensue that physically realistic TACs are
recoveredin the solutionof prablemsof larger dimension For
competenessa brief ovewview of the COBRA framawork is
given befae the extensiors are presented In addition, the
entire procedurefor the generatio of the TAC appoximatirg
basisis illustratedschematicallyn Figure3.

k1
Q(1)

k2

Figure 1: Compartmetal model for **™Tc-teboroximein the
myocardiun. Here, Q(t) representghe tracer actvity within the
myocardium, while othersymbolsaredefinedwithin thetext.
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Figure2: Non-uniformresolutionpixel grid. Sucha grid is proposel

in orderto offer increasedesolutionin areaf clinical interestwhile

reducingthe overall problemdimension. Although the pixels of the
highestresolutionregion arenot labeledin thefigure, region numbers
aresimilarly assignedo thereto.

A. Spectal representationof single compartment
modelkinetics

Our kinetic model formuation begins by generalizig (1)
to the casewherethe TAC of eachregion may be compsed
of linear combirationsof the response®f several undelying
commrtments. This is often useful for modelirg tissue
hetergeneity partialvolumeandspillover effects[8]. We thus
have:

M
On(t) =D KT™i(t) xe T, )
m=1
where]M is the numker of exponentialmodes (compartments)
fromwhichthe TACsmayderive.

Sincethealgoritm will bebasedn discretdime,we sample
theimagingtime interval at L pointst = ¢, tj41 > ¢, 1 =
0,1,..., L —1giving:

L

an[” = ¢n(t)

l

|
—

5(t — tl), (3)

Il
=}

whered(¢) is the Dirac deltadistribution.

In (2) we seethat eachTAC deperdls nonlinearly on the
paraneter k;. As the prgection measurerents constitute
sumsof TAC values, they are compsed of weighted sums
of convolved exponential functions. The deternination of
the values of these parametes constitutesthe extremdy
ill-conditioned prodem of resolvig the commners of
exponentialsums[2, 3]. We wish to linearizethe prablemand
improve its condition. To do this, we emplo/ the exponential
spectralmethod of Cunnindgham et al. and define a set of
sampled exporential functions which span the rang of
physiologicallyfeasiblecompartmentamodesexpededwithin
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theimageddistribution[1]:
Fall] = e FE 140 1=0,1,...,L—1, @)
m=1,...,M—1. (5)

It is important that At be small enowgh to ensureadeqate
sampling of the spectralfunctiors. The numter of basis
samplesL must be greaterthan or equalto the number of

projedion samplingtime points L, sincethe latter will always
be a subsetof the forme. While the latter may be irregularly

sampled,the former must be sampledregularly, for reasons
thatwill becomeclearshortly

Typically, we desirethe ability to modelthe presege of the
the bload input function within the imageddistribution. This
correspndswithin the spectralcontet to corvolution with an
exponentialbasisfundion (4) having k3 = oo. This function
is equivdentto the Dirac deltadistribution. The spectraket(4)

is conseqgently augnentedby:

Frll] = olt],

whered[l] is theunit sample.

We thenform the (L x M) matrix X whosernth colurm
is f[l] asdefinedin (4). Corvolving eachcolumnof X with

thebloodinput function i[l] = i(IAt), [ =0,1,..., L — 1we
form:
(c’1 CIM) (7)

where we have retainedonly the first L elemets of the
convolution, sothattherow dimensiam of C’ is L.

(6)

c 2

/
CZ

In realistic imaging scenarios,residual activity may be
presentin the imagel distribution, perhgs from a previous
tracerinjection In orderthat suchan offsetmay be modeled
we augnentC’ with acolumn

c 8

/ j— -
M+1 — 1;

wheretheright-handsideis a colurm vectorof L ones.

B. Orthogonalizaton of spectal basis

We now invoke the singularvaluedeconposition(SVD) to
find orthogoral basisvectas for therange of C’. Thesearethe
left singular(column) vectas u,; of theSVD of C’;

C' =USVT, U= (ul ug - uMH) 9)
whereV is the matrix of right singularvectas, andS is the
diaganal matrix of singularvalues. We associatehe discrete
time index [ with eachrow of U. Depemling on the degree of
accuray requied in the sampledrepesentatiorof the ¢, (),
we utilize only thefirst M < M of U anddefine:

).

Typically, M ~ 3 to 5 is sufiicient for myocardial imagirg
applicatins. Figure4 shavsthecolumrs of U whenM = 5.

-U—é (111 uz -+ (10)

Eachcolumm of U representsa basisfunction, andwe have
plottedthesefunctionsin Figure4.

We referto theu,,, asconvolvedorthagonalbasisfunctions
(COBs).TheCOBwill, in gereral,possesgegative excursias.
SinceTAC valuesarealways positive, their usein large DRIP
prodemsrequrestheimplemenationof the constraints:

M
QAS”«“] = Z Hmn um[l] >0, leR 1y
m=1

wherey,,,, is the coeficient of the mth basisfunction for the
nthregion. Thevalueu,, (] correspondso the (I, m)th element
of U. Werecogizethattheconstraims needonly beenforedat
theextremaof the basisfunctions,aswell asatthefirst andlast
samplingpoints. Imposition of theseconstraintsis sufficient
to precluc negdive excursions. Equivalently, the setof time
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Figure4: Mary of theelementof U (sampleof theorthogoral basis
functions)arenegative, asis obvious from theseplots of the columns
of U.

indicesat which constraintareenfacedis givenby:

Ri{l

Um [l + 1] > wum[l], um[l] < um[l — 1],

1=1,2,...,[—2
Um [l + 1] < um[l], um[l] > um[l — 1],
I=1,2,...,L—2

1=0, l—Ll}.

The left-hard side of (11) givesthe the TAC valuefor the
nth region at discretetime index I. ThevalueZ = |R| < L
correspnds to the nunber of time indices at which the
constraits are imposed We define the total numker of
constraits Y £ =

Theconstraint€11) mayberewritten asthematrix product:
¢=Ap (12
whereA € REV*N s ablock diagoral matrix.

We desire that én[l] be nonnegative for all n and
I € R. However, this leadsto a very large matrix A, whose
dimensim scalesas the squae of the numter of regions.
This apprach consegently becanes impractical for higher
resolution recorstruction prodems, where the number of
regions is large, unlesssparsestorageis usedfor A. Even
unde suchcircunstancesthe impositionof =N corstraintsis
computationallyburdersome.

C. Constructiorof non-ngative basisthroughaffine
transbrmation

The prodem describedabove would be greatly simplified
if a nonnegative basis,nonnegdive coeficientrepresentation
was available. To this end we begin by expressing the
convolved original spectrumC’ asan appoximatian in terms
of theorthayonalbasis:

C'~Up,, (13

wherep, € RM>*(M+1) js amatrix of known coeficients.

Employing theoblique rotationmethodproposedby Siteket
al.in [9], weintroduceaninvertiblematrix R within theidentity
R 'R, giving:

C' ~ UR'R)u, (14
= (UR)(Rp,) (15
= C(R) p,(R). (16)

To yield the desiredbasis, the elemetts of C(R) and z,(R)
mustobey:

gm >0, 1=1,2,..., L,

>0, m=1,2..., M,

m=12.... M
m=0,1,..., M+1

. @
respectidy, whereé!™ is the (I, m)th elememn of C(R) and
pm™ the (m, m)th elemenof p, (R).

mm

Ho

In orderto find C(R) thusspecifiedwe formuatethe cost
function:

(@™)?2. 1(c'"™ < 0),

(™) I (g™ < 0)} (19

where I() is an indicaor function assumingthe value unity
whenits argument is true. Clearly F(R) is discontinuous,
and cannd be minimized using corventioral optimizatian

algorithms. It is possibleto replacel () with anappioximatirg

continwus function, such as a logistic fundion. However,

sincethereexist mary solutionswhich satisfy (17), samplirg

algorithms which do not require costfunction contintty can
easilyfind asolutionto (18). We emplogred Adaptive Simulated
Annealirg, using defadt algoithm paraneters[10], to yield

thebasisshavn in Figure5. Here,ASA terminatedvhenF(R)

waslessthan(.5 x 107, a tolerancewhich proved suficient
for this application and correspondedo a maximum negative
excursionof ary basisfunction of 2.6 of the maximumvalue
of the function. The small negative elementsof C were set
to zeroto prevent ary negative valuesoccuring amorg the
recorstructedTAC samples. The ASA algoithm executedin

503minutesonaPentiumlll 850MHz processor

D. Evaluatng the accuracy of TACs approximated
usingnon-ngativebasis
It is importantto evaluatethe quality of the appioximatian

obtaina usingthe oblique-rotatd corvolved-athogmal basis
(ORCOB).To this end,we definethe metric:

Lo 2[l)2

L—1
=0

(1>

M, (=[], Z[1]) (19

wherez[l] and z[l] arethe true and estimatedfunctionsto be
compared,respectiely.
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Figure5: Oblique-rotatedrersionsof the orthogon basisfunctions
which appeain Figure4.

Let us take for exampe the basisset shavn in Figure 5.
This ORCOBwasderived from the COB functions shawvn in
Figure4, which werein turn derivedfrom an (M — 1) = 100
function exponentialspectrumselectedby reguarly samplirg
the intenal ks € [10~3, 1Jmin~'. After augnentation of
the spectrumwith a unit sample,corvolution with the input
function i[l] = IAte At/97 was perbrmed Subsequet
augnentation with constantfunction (8) was followed by
application of the SVD andretentionof only thefirst five u,,.
Thisentireprocesss outlinedin Figure3.

We canapprximatethe columrs of thecorvolvedspectrim
C’ (shawvn in Figure6) usingthe ORCOBfunctions(shavn in
Figure5) giving: o
C=C(R) g (20
wherethe mimth elemeniof p,, is 12 andR is a solutionof
F(R)=0.

Let thefunctions:
el m=0,1,..., M+1, 1=0,1,...,L—1 (21)
- 1], m=0,1,...,M+1, [=0,1,....,L—1 (22

representhemth columrs of ¢ andC’, respectiely. We may
then find the maximum appraximation error amongall the
convolvedspectrafunctiors as:

Moumax = max

/
. Mpo,v(c -
m=0,1,..., M+1

m“]a éﬁl[l]) = 13%a (23)
a resultwhich is entirely satishctory The ¢ [I] are plotted

versughedé, [ (] in Figure6.

Until this point, we have presered the reguiar samplingof
the basisfunctiors to allow us to easily convolve the rotated
orthagonalbasiswith the input function. At this junctue, we
may samplethe ORCOB at the projection sampletime points.
Element! of columnvectorm of the sampledORCOB matrix
C is given by:

eml] = k'], i

K ={k:kAt=t, k=0,1,..., L} (24)
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Figure 6: The approximationof the corvolved spectrumusing the
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The DRIP problem may now be reexpressedas one of
estimatingthe coeficients p™" of the c,, for all regionrs, so
thatthe TAC of eachregion mayberecovered:

M
Gulll =D ™ ewm[l],  1=01,...,L—-1. (29
m=1

We mustnow specifyhow the fi.,,,,, maybe estimatedjiven
theinconsistenprgectionmeasurermants.

V. PROBLEM SOLUTION

In orderto solve the DRIP problem as linear system,we
mustconstrict a matrix which mapsp € RMN>1 containirg
the ™", to the projectionbin measuementsy € RTC*1:

y=Fup, (26)
whereT is thetotal nunberof angulamprojectiors, andQ is the
numter of binsperangularmprojedion.

The constretion of F € RTL*MN has beendescribd
in detail previously [5]. Briefly, this matrix senesto express
each prgection bin measuementin terms of the fractioral
contritution of eachimagedregion to that bin, multiplied
by the fractioral contibution of eachbasisfunction to each
region:

N M
gpq[l] = Z |f]£q X Z an Cm [”]
n=1 m=1
1,2,....,T
q 1,2,..., Q.

Thematrix F contairsthegeanetricweightirg factorsg andthe
basisfunction valuesc arrargedin sucha way thatthe prodict
in (26)is readly effected

Whenfine pixelizations of the imagespaceare emplo/ed,
eachpixel contritutesto only a handul of bins within each



anguar projedion. Conseqently, F is very sparselypopulated.
This is a fortunatecharactestic, since densestorageof this
matrix becanesprahibitive for large problems.

Previous experience [5] has shavn that an unweghted
least squaresestimatoris able to provide virtually unbiased
highly efficient estimatesji at projection data noise levels
which are typical for dynanic SPECT studies. This implies
that the statistical mismatchimplicit in applyirng the least
squaresestimatorto Poissondatais not a significantsourceof
estimatiorerra.

Consequetly, we choaseto find the paraneter estimateg
which solvesthe constraimdleastsquareprodem:

o) = min|y—Ful’ (27
Zé{HE%MN“ :u"’"EO}, (28

where
po= [t g2t M 2 MY 29

Since all of the elementsof F are nonnegdive, the
constrais (28) aresuficient to ensurehattherecaoveredTACs
in (25) arenonngyative atall time poirts.

We herceforth refer to this algoithm for the estimation
of u as the oblique-rotated corvolved-orthognal basis
recorstructionalgoithm (ORCOBRA).

V. NUMERICAL METHODS

Problem (27-28) constitutesa nonnegdive least squares
(NNLS) problen. As such,innumerablemethals exist for its
solution. An excdlent review of thesealgorithms appearsin
[11].

We desireanalgorithm with thefollowing charateristics:

1. Utilization of sparse matrix storage for matrix F.
Algorithms which do not require input of the matrix
F, but only the products, Fx and F 'y, are especially
suitedto this applicdion. This stemsfrom the fact that
F is separabldanto the elementby-elenent product of
two matriceswhich eachcontainmary identical blocks
[12, 5].

2. Preserdtion of numeical precision. The algoritm
shoud not calculatethe praduct F 7 F [11].

3. An iteratve implementation, which refines a starting
estimatds desirablefor warm-startilg of recorstructions
on highe resolution pixd grids based on coarse
preliminary reconstrgtions obtained on lower
resoldion grids. We have shavn previously how large
computational saszings (=7%% for 1024 pixels) may be
obtairedin thisway [13].

We discussfour major apprachesto the solution of the
NNLS prablem.

A. Leastdistanceproblem

TheNNLS problemcanberecastsaleastdistancgprodem
(LDP). Thisis theapprachtakenby LawsonandHansor14].
In preliminary expaimentsusingthe codeprovidedin [14], we
found that the LDP-basedalgorithm performed poaly when
appliedto large sparsesystemg13].

B. Quadratic program

Alternatively, problen NNLS can be reexpressedas a
guadatic program(QP)[11]

6(p) = min p"Ap+a’p, (30
neq’
with
Q’é{ueﬂ%MN:thuzl} 31
where
A=FTF, a=-2FTy; (32
h=oco, 1=0, A=Iyn, (33

wherel,, y is anidentity matrix of dimensionequalto that of
theparametevecta.

Sinceproblem QP is a subppblemsolved at eachiteration
of mary constrined nonlinear optimizaion algoithms;
efficient, well-testedand nurrerically robust cocke exists for its
solution. The formation of the matrix F 7 F is uncesirableasit
introducesnunerical erras, so corventioral QP method must
be modfied to obviate the needto calculatethis matrix. Gill et
al. describesuchanalgorittm, which is availableaspartof the
commaecial LSSOLandNAG libraries[15, 11]. Unfortunately
thisimplementationis not suitablefor large sparsesystems.

Oneof themorepronising QP-basedlgoithm testedsofar
is the block prindpal pivoting methodof Portual et al. [16],
whichis specificallyintendedor large sparseNNLS prodems,
andsolvesthe linear complenentaryprodem of the QP In its
original form, it doesnothave facilitiesfor warm-startiig using
aninitial estimate,and canna exploit the separale natue of
F. Nevertteless,owing to the sparsityof F”F, which must
be stored, storagerequirenents are reasoable, even when
ORCOBRAIs appliedto large datasetsComputatimal burden
is perhapsan order of magnitue lower thanthat of the NAG
library's densematrix QP algoiithm.

C. Richardsoniteration

Amongall methals investigded, the first-order Richardsa
method[11, p. 276 appersto offer the best compgomise
betweenspeedof corvergerce and memoryrequiements. It
alsosatisfiesall of the desiredchaacteristicsspecifiedabove.
TheRichardsoriterationis givenby:

ﬂ(k)

=a" V+aFT(y-Fa* V) @34
wherei™ is the solutionvectorat iterationk anda > 0 is a
paraneteraffecting corvergence. Theiterationconvergesto the

leastsquaresolutionunde thecondtions:

9 e ranggF7), 0<a<2/o} (35



where o1 is the largest singular value of F. In a manrer
analogusto that proposedby Cryer[17] we obtainan NNLS
solutionby modifying theiterationin 34:

max {0, [,:L(’“)JraFT(y—Fﬂ(’“l)ﬂ }
J
1,2, ..., NM (36)

wherefi; is the jth elementof i andthe opeaator[]; extracts
the jth elementof a vectoramgument. To avoid the difficulty

of finding the largestsingularvalueof F, weinitially seta to a
largenumterandreducdt by half until adecreasé successie

residualss achiezed Theinitial valueof « shoud be sethigh

enowgh sothatthealgoiithm decreases atthefirstiteration. A

flowchat of this algoithm apgearsin Figure?.

i
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Figure7: Flowchartillustratingthe RichardsorNNLS algorithm.

D. Geneal non-lineartechniques

A furthe alternatve is to solve the NNLS problem via a
geneal nondinear iterative optimization scheme,such as a
conjugate gradent methodwith paraméer bound corstraints.
An adwentageof this classof method is thatit allows a more
flexible selectionof maximum lik elihood estimationcriterion

We have not yet evaluaed thesemethals for apgication to the
ORCOBRANNLS prablem.

In the expaimentswhich follow, we employ the modfied
first-order Richardsoniteration specifiedin (36). We choose
to storeF asa sparsematrix, ratherthanrecalculatiig it every
iteration,asthis provesfasterfor this size datasetonsicring
theamoun of RAM memay available.

VI. ALGORITHM EVALUATION

A. Phantanimaging geometryandkinetics

We evaluatethe algoithm usinga phantan datasetwhose
imaging and sourcegeametries, Poissoncourt statistics,and
tracer kinetics are moceled on an actual clinical myocadial
SPECTdataset. The latter is describd in detailin [7]. We
choce to model our phantan after this datasetas we wish,
in future work, to apply ORCOBRATto similar datasetsIn so
doing we will beableto compae the resultsobtainedto those
yieldedby othermethals which have beenusedto reconstrat
thesedata[7, 5].

A myocadial defectnot presenin thepatientdatahasbeen
included so we may determire the detectabilityof the defect.
Theregions of the pharitom datasefredelineatedn Figure8,
while thekineticsareshavn in Figure9.

> 80

A - Myocardium
B - Defect

C - Liver

D - LV blood pool
E - Background

120 140

20 40 60 80
X

Figure8: The phantomdatasetis basedon the sourceandimaging
geometryof theclinical dynamic SPECTdata.

100 160

B. Reconstruagbn geometryandtempoal samplirg

We employ ORCOBRA to recorstructthe phartom image
sequene on the nonruniform resolutian grids which apgearin
Figures10, 11 and12. Thesegrids differ with respectto the
maximun resolutionof the sub-gid overlying the heart, the
respectie maxinum resolutiors being40 x 40, 20 x 20 and
16 x 16 pixes. A 16 x 16 grid ovediestheliver,andan8 x 8
grid, thebackgound in all grids.

Design of sucha grid so that areasof high actvity and
interestsuch as the myocardium left vertricular (LV) blood
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Figure 9: Phantomregion kinetics appearwith symbds dending
sampldimes.For this set,eachtime pointcorrespondto anindividual
camerarotation. Pointsmarked with a’+' correspondo the sample
timesof thosecameraotationsincludedin the datasinogramy.

pool and liver receve finer discretizationrequiresonly crude
localization of theseareaswithin image space. A standad
staticrecorstructionalgorithm maybe usedfor this pumpose or
ORCOBRAmMaybeappliedto alow resolutionuniform grid.

Figure 10: The coarsestgrid usedin these experimentsoffers a
maximumresolutionof 16 x 16 pixels. This grid is referredto asthe
16-16-8grid, andcontainsl136 pixels.

Owing to memoy constraintsyve include in our measurd
sinogran y, only thefirst 23 of the45 single-ptationsinogams
acquied by of the camera.This time point selectionis shavn
in Figure9.

All of the 120geneatedprojectiors perrotationareutilized
in therecastruction.

A summaryof the imaging parametey appearsn Table1,
while paranetersfor the RichardsorNNLS algorithmarelisted
in Table2.

C. Performancametric

To evaluategoocdhess-of-fitbetweentrue TACs and TACs
recoveredby the algoiithm, we baseour metricon M ,,,, which
we definal in (19).

Figure 11: The 20-16-8 grid possessea maximum resolution of
20 x 20 pixels and contains184 pixels. The finestresolutionregion
is extendedin this grid so thatits width spansan integral numberof
8 x 8-sizepixels.

Figure12: With amaximumresolutionof 40 x 40 pixels,the40-16-8
grid is the finest upon which we reconstructthe dynamic image
sequenein theseexperiments.This grid contains388 pixels.

Tablel
Imagingparameteralues.
| Parameter | Value |

Imaging time (minutes) 15
Time samplepointsin set 45
Time samplepoints
selected L) 23
Rotationdn set 45
Rotationsselected i) 23
Angularprojedions
in setperrotation 120
Bins per
anguar projection (Q) 64

Table2
RichardsorNNLS algorithmparametewalues
| Param¢er | Value |
(7)) 10
€ 10°°




LetQ,, s € {A, B,C, D, E} repesenthe regions definel
in Figure 8. We definethe true TAC of region Q25 as ®,[!],
and its estimate,obtaired for noise realizationi by ®i[l].
We may then measue the goadness-ofiit betweentrue and
recorstructed TACs over I noise-ealizations,at a particuar
noiselevel, for a particuar pixel grid configurationas:

I
_ 1 1 .
M, = FZMW<<1>S[J], o > ¢n[z]>, (37
i=1 5l neqy,
where|Q;| representshenumbe of pixels in region s.

D. Phantan datareconstructiomesults

Tables 3, 4, and 5 give values for M, at various
noise-levels, for the myocardium myocadial defectandliver,
respectrely. For testswhere noiseis present,resultsgiven
are averagd over I = 30 noiserealizatiors. Between-trial
standarddeviations are also talulated Resultsfor the LV
blood pod and backgourd are omitted for brevity, since
theseregions are usually of lessinterestin the diagnais of
myoardial perfusiondefects.

Total count valuesfor the simulationsare given for the
full 45 rotation datasets. Owing to the redwced rotatian
samplingschemeemplgyed,themeasuredinogramy to which
ORCOBRAIs appliedcontairs appoximately266000 counts.
This is lessthan53% of the total eventsrecodedfor the slice
of patientdataon which the phanten wasmockled.

Figure 14 shavs the meanTACs recoveredfor all phantan
regions at this noise level. TheseTACs were obtaired by
averadng the pixd TACs within each region Qg in the
recorstructeddynamic image sequene. Several samplesof
this sequenceappearin Figure 13. Intraregion variahlity is
quartified in termsof pixel TAC standarddeviation from the
meanasshovn in Figurel4.

Figure 15 illustratesan exceipt of the dynanic sequene
obtainel when ORCOBRA is appliedto a single realizatio
of a phantom sinogram The correspnding TACs appea in
Figure 16. It is clearthat ‘cross-talk betweenthe liver and
backgourd leadsto undeestimatiorof theliver TAC amplituce
andoverestimatiorof backgoundactivity.

All computationwas performedon a Pentiumlll 850MHz
processor equipped with 512MB of RAM and 1GB of hard
disk swap space. Mean comptation times for the various
simulationsapperin Table6.

VII. DisCcUssION

We have shovn how nonnegaive basisfundions, which
allow a spectralrepresentationof single compatment tracer
kinetics using nonnegative coeficients, may be derived
from a chosenexponential spectrun via the SVD and an
oblique rotation Theadditionto the exporential spectrun and
convolved exponentialspectrmm of functions which allow for
modding of blood pool and regions of constantactiity have
not beenobsenred to increasethe dimensiam of the resulting

Table3
Goodnes-of-fitof therecorerednormalmyocardialTACsis
evaluatedin termsof the metric 73, for variousnoise-levelsand
grid resolutions Valuesaregiven + betweertrial standarddeviations.
Thenumbe of noiserealizationsl appearsn thelastcolumn.

Counts Pixels Noise
388 | 184 | 136 | realizations
o] 1.37 3.72 3.11 1
5 x 10° 1.90+0.4 | 3.93+0.4 | 3.494+0.3 30
Table4

Valuesof Mg, obtainedin the comparisorof trueandrecovered
myocadial defectTACs.

Counts Pixels Noise
388 | 184 | 136 | realizations
o0 1.46 2.86 4.80 1
5 x 10° 2.74+1.0 | 3.82+£1.9 | 5.58 £3.7 30
Table5

In termsof thethe metric M3, the TAC for theliveris themore
accuratelyrecoreredthanthe TACsof otherregions.

Counts Pixels Noise
388 | 184 | 136 | realizations
o0 1.26 0.69 1.23 1
5 x 10° 1.41+£0.1 | 0.80£0.1 | 1.37 0.1 30
Table6

Computatiorl statisticsderived from the experimentalapplicationof
ORCOBRAto noise-fregphartom data. The secondcolumngivesthe
time neededo calculateandstorethe systemmatrix F for eachgrid
specifiedn columnone. Columnthreecontainsthe numberof
Richardsoriterationsneededo find the solutionwhich attains
e = 10~?, while thefourth columngivesthe total time to performalll
iterations.Thetotal numker of floating point operationgin gigaflops)
for all Richardsoriterationsappersin thefinal column.

# F prep. | Iterations| Optim. Optim.
pixels || (min) time (min) | Gflops
388 16.9 309 86.1 28.3
184 4.9 236 48.9 17.5
136 3.9 310 55.2 20.2

basisset. Approximationis achieved to within a meansquare
errorof 1.3%, andconsegentlyconstitutesa very smallsource
of errorin thedynamicreconstration prodem.

Scrutiry of both the recovered TACs in Figure 14 and
the recmstructed dynamic sequene in Figure 13 reveals
that the myocardial defectis easily discerrible from healthy
myoardium. Limited resolution and possiblythe useof the
non-uniform resolutiongrid, leadsto ‘bleedng’ of regions so
that the nomal myocardial TAC is undeestimatedwhile that



Table7
Computatioml statisticsderived from the experimentalapplicationof
ORCOBRAto the5 x 10° countphantomdata. The quantitiesisted
aredescribedn the captionof Table6. Whereapplicalle, mean
valuesover 30 testsaregiven + onestandardieviation.

# F prep. | lterations Optim. Optim.
pixels || (min) time (min) Gflops
388 16.1 107.7+19.8 | 31.6+11.0 | 9.9+1.8
184 5.2 87.0 £18.1 199+10.6 | 6.5+ 1.3
136 4.2 81.24+ 154 14.5+£2.7 54+£1.0

Figure13: Snapshot®f the reconstructediynamic sequence.|l],
which results from the application of ORCOBRA to a dataset
containing2.66 x 10° total courts, a selectedsubsetof a full 45
rotation, 120 projectionset containing5 x 10° counts. The source
distribution was reconstruted on the 40-16-8grid shavn in Figure
12. Thesourceintensitieswhich appeambove arethe averageof those
obtainedover 30 noise realizations. The myocardal defectis well
differentiatedrom the surrourding healthytissue.

of the lessintenselV blood pool is overestimated.Similarly,

theliver TAC is uncerestimatedandits activity clearly bleeds
into the surraunding backgound leadingto overestimatesof

theactvity in thelatter However, meansquareerrorsfor these
clinically relevant regions are belov 6%, even though only

half the realistic number of phota countsfor a single slice
99m Te-tebaoxime myocadial study are utilized. Figures15

and16 show resultsanalogusto thosewhich appearin Figures
13and14,for thecasewhereORCOBRAIs appliedto asingle
noiserealization

Table 7 indicatesthat the highest resolution40-16-8 grid,
which is illustratedin Figure 12, is reconstrgtedin a mean
time of 48 minuteson a mid-speed PentiumlIll CPU. This
includes the 16 minutesneededo calculateandstoreF, which
may then be usedin multiple subsegant applicatiors of the
algorithm to datasetdor which the projection geonetry and
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TAC E: Background
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.=+~ Recovered # std. dev

2 4 6
time (minutes)

Figure 14: TACs obtainedby finding the meanTAC of eachregion
of the full dynamic reconstruted sequence several time samples
of which apper in Figure 13. Standarddeviations plotted relateto
intrarggion variation of individual pixel TACs. Although ‘bleeding’
of regions leadsto the overestimationof the actiity in lessintense
regions at the expenseof underestimatingegions of high actvity
suchasthe healthymyocardiumand|liver, recorered TAC quality is
sufficientto allow isolationof the myocardialdefect.
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Figure15: Snapshot®f the reconstructediynamic sequence.[l],
which resultsfrom theapplicationof ORCOBRALto asinglesinogram
containing2.66 x 10° total counts.Correspoding TACsareshown in
Figurel6.

geneal kinetic modelareapprgriate. The choserRichardsa
termination tolerarce of e = 10> proved overly stringen and
execuion timesmaybe halvedwithout materiallyaffecting the
quality of the reconstration by selectinga more reasonale
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Figure 16: Mean TACs for eachregion recovered from a single
sinogranrealizationat 2.66 x 10° total courts.

valuefor this paraneter suchase = 10~2. Comparim Table
6 (apgication to noisy-free data) and Table 7 (applicatio

to noisy data) we seethat the number of iterationsrequired

to reachthe termination criterion in the noise-fee caseis

greater This is probaly dueto the greatersmoothmessand
convexity of the costfundion surfacein the noise-freecase,
which allows a bettersolutionto befound, albeitafteralonger

searchprocess. For dataset®f this size,computationtimesare
likely to be significantlyimproved by increasingthe available
RAM memoy to 1.5GB,asthis will eliminatethe delaysdue
to memay swappingbetweerRAM andharddisk swap space
expeiencedhere

The 503 minutes requred to find the obliquerotatedbasis
is prohbitive in clinical apgications, especially since the
ORCOBis dependenton the bloodinput function andmustbe
recalculatedor eachstudy This prodem may be overcome
by applyingthe SVD to the original exponentialspectrum(4)
ratherthanthe convolved spectrun. An affine transfomation
may then be found that producesa nonnegaive basissetin
exactly the samemanrer describedin Sectionlll-C. This
setis appopriate for a wide rang of studies,as it may be
convolvedwith theinput fundion for a particularstudyto form
a TAC basis. Sucha solution for the exponential spectrm
chosenin Sectionlll-D was found in 42 minutes, and had
similar apprximating performarce to the ORCOB usedin
the simulations. However, mockling of constantTAC offset
function (8) is understandaly poor, sincethis function canrot
bemodela in theuncomwolved spectrunwithout knonledgeof
the input function. Accurateappraximation of suchfunctions
requiesaugmeatationof the ORCOBwith a constanfunction.
This hasthe disadartageof increasingthe size of the inverse
prodem by afactorof (M + 1)/M.

A secondcharateristic of the algorithm which detracts
from its clinical utility is the requrementthata goad estimate

of thebload input fundion beavailable. Accuratemeasurenma
of this function via arterial blood samplingis logistically
difficult and significantly increasesthe cost and compexity
of ECT studies. An alternatve is to estimatethe blood input
function from theactuity within theleft vertricularbloodpod.
This is difficult in the caseof the DRIP prodem, since the
activity within this region canna be obtaned from an image
series. Reutteret al. have shavn how a basisof 16 B-splines
areableto appoximatewith reasonabl@ccurag the regional
TACsof myocardialstudieg12]. While geneal appioximatirg
functions suchas B-spinesdo not enfore@ consisteng with a
particula kinetic model, they appearto be adeaate for the
solution of the DRIP prodem when the numter of regional
TACs to be estimated(and hencethe size of the inverse
prodem) is small. In caseswherethe apgication of standadl
(static) recorstruction algorithms to inconsistentprojectian
datais sufficient to allow the image domain to be cruddy
segmeried into bulk regions (myocardium, liver, LV blood
poolandbackgourd), reasoableestimategor thebloodinput
function might be obtaired directly from prgectionsusingthe
methodof Reutteret al. ORCOBRA could then be invoked
to produce higherresolution recastructiors directly from the
projedion data.The consisteng betweerthe meanTAC of the
LV bloaod pool obtainedoy ORCOBRA,andthe input function
estimatemight sene asa measuref theaccuagy of thelatter

Futurework will involve the developmert of seconeorder
iteratve methals in order to increasethe corvergerce rate
of ORCOBRA. The algoiithm will also be further evaluate
through its applicationto the clinical data upon which the
phariomwasmodeled
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